
Naïve Bayes Classifier 

 
The Bayes Theorem gives us information of changes in probability given a particular situation. Bayes 

theorem act as a basic criteria for many machine learning algorithm and forms the basis of Naïve Bayes 

classifier. These kind of classifier work in linear time and are very scalable and adoptable. The conditional 

independence of features may result in wrong classification many times but the ease of use and adaptability 

of classifiers make these types of classifier as the widespread tool. 

We apply the given formulation to our problem in the following manner, using Bayes theorem, we can 

write the probability of dish belonging to particular cuisine as, 

𝑃(𝐶𝑗|𝑑) = 𝑃(𝑑|𝐶𝑗) ∗
𝑃(𝐶𝑗)

𝑃(𝑑)
 

where 𝑃(𝑑) =  Probability of occurrence of particular dish. 𝑃(𝐶𝑗) = Probability of occurrence of particular 

Cuisine. 𝑃(𝐶𝑗| 𝑑) = Probability of particular dish being in cuisine 𝐶𝑗. ( we want to find out this). 𝑃(𝑑| 𝐶𝑗) 

= Probability of occurrence of particular dish given a cuisine. (We can find this using training data). 

 

We have assumed here that the occurrence of ingredients is not correlated. This means that the probability 

of occurring of ingredient is independent of other ingredient present in the dish. 

𝑃(𝐼𝑖|𝐼𝑗) = 𝑃(𝐼𝑖)   ∀ 𝑖 ∈ [1, 𝑚] , 𝑗 ∈ [1, 𝑚] 

Second assumption here is probability of occurring of a dish in a cuisine is product of the probabilities of 

all the ingredients in a dish, i.e. dishes are independent. 

𝑃(𝑑|𝐶𝑗) = 𝑃(𝐼1|𝐶𝑗) ∗ 𝑃(𝐼2|𝐶𝑗)*𝑃(𝐼3|𝐶𝑗)*𝑃(𝐼4|𝐶𝑗) … . .∗ 𝑃(𝐼𝑚|𝐶𝑗) 

Now with this we can calculate 𝑃(𝐶𝑗|𝑑) and make a classifier. A simple Bayesian classifier will be of the  

𝐽 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘𝜖{1,….𝐾}𝑃(𝐶𝑘) ∏ 𝑃(𝑥𝑖|𝐶𝑘)

𝑛

𝑖=1

 

The dish is classified in cuisine which gives the maximum probability. 

Now we will see how to do this classification from the data present at hand. From the given training data 

we can create the document term matrix of the ingredients. 



 

All the matrices in this blog are just representation of original matrices. 

Since we know from the training data that particular dish belongs to which cuisine we can sort the data 

according to given cuisine and take row sum in each particular category of cuisine.

 

Now to convert this matrix to probability matrix we need to make the matrix column stochastic.

 



Now with this matrix at hand we are in a position to make our Naïve Bayes Classifier. The i, jth element of 

P matrix is P(Ij |Ci ).  

 

Using the above equation and Probability matrix calculated we can find the probability of a given cuisine 

for a particular dish. 

𝑃(𝐶𝑗|𝑑) = 𝑃(𝑑|𝐶𝑗) ∗ 𝑃(𝐶𝑗) 

A given dish is classified to a cuisine which gives maximum probability of belonging to a particular cuisine.  

 

Modifications of Naïve Bayes. 

When we are classifying through Naïve Bayes probability matrix, if in training data probability of an 

ingredient appearing in the cuisine is zero then the whole probability will be zero regardless of other 

probabilities. Solution can be taking the Geometric Mean of the entries in a row which are non-zero. In a 

situation, if there are only few non-zero entries in a row which will make geometric mean higher than above 

and in these situations, we can get wrong classifications. To avoid previous situation, we maintained a 

threshold which is defined as the total number of non-zero ingredients should be greater than particular 

value and then we have calculated the Geometric Mean (with some minimum number of nonzero terms). 

Result obtained from Naïve Bayes and its various variations 

 

The third row in above table correspond to the case where the probability term of 𝑃(𝐶𝑗) is constant for all 

cuisine i.e. 𝑃(𝐶𝑗) = 0.05 for all j in 1 to 20. 

It can be seen from the table that the modifications of taking threshold of minimum number of ingredients 

present in dish to be classified in given cuisine before we take the geometric mean, actually improves the 

accuracy. The geometric mean and its modifications are less accurate than probability multiplication. The 

modification of uniform probability gives the best accuracy. 

𝑃(𝑑|𝐶𝑗) = 𝑃(𝐼1|𝐶𝑗) ∗ 𝑃(𝐼2|𝐶𝑗)*𝑃(𝐼3|𝐶𝑗)*𝑃(𝐼4|𝐶𝑗) … . .∗ (𝐼𝑚|𝐶𝑗) 


